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Abstract

In this paper we study constrained variational problems in one independent variable defined on
the space of integral curves of a Frenet system in a homogeneous spaceG/H . We prove that if the
Lagrangian isG-invariant and coisotropic then the extremal curves can be found by quadratures.
Our proof is constructive and relies on the reduction theory for coisotropic optimal control problems.
This gives a unified explanation of the integrability of several classical variational problems such as
the total squared curvature functional, the projective, conformal and pseudo-conformal arc-length
functionals, the Delaunay and the Poincaré variational problems.
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1. Introduction

The present paper is an outcome of our attempt to understand the general mechanisms
underlying the integrability of constrained variational problems for curves of constant type
in homogeneous spaces[10,11,17,18]. The Pfaffian differential systems arising from curves
of constant type lead to the notion ofgeneralized Frenet systemfor curves of a homoge-
neous spaceG/H . Roughly speaking, a generalized Frenet system of orderk onG/H is
aG-invariant submanifoldS ⊂ Jk(R,G/H) of the jet spaceJk(R,G/H), which may be
linearized by a left-invariant affine sub-bundle ofT(G). From the geometrical viewpoint
the integral curves of such systems are canonical lifts of curves of constant type onG/H .
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The most elementary example is the classical Frenet–Serret differential system for generic
curves in Euclidean space. We then consider aG-invariant Lagrangian and we investigate the
corresponding Euler–Lagrange system. The general construction of the momentum space
and of the Euler–Lagrange system of a constrained variational problem in one independent
variable is due to Griffiths (we refer to[5,12,16]as the standard references on the subject and
to [6] as the original source of inspiration of the approach developed by Griffiths). We ad-
here to the terminology introduced in[5,12]and say that a LagrangianL is non-degenerate
if the momentum space Yis odd-dimensional and if the canonical 2-form onY has maximal
rank. We prove that if the LagrangianL isG-invariant andcoisotropic(seeDefinition 4.3)
then the extremal curves of the variational problem can be found by quadratures. The proof
relies on the reduction theory of Hamiltonian systems with symmetries (see[2,9,14,15]
for the standard theory in the symplectic category and[1,5,24,27]for generalizations to
contact geometry, time-dependent Hamiltonian systems and Poisson manifolds). One of
the ingredients of the proof is a concrete geometric description of the Marsden–Weinstein
reduced spaces in terms of thephase portraitsof the system. This procedure is constructive
and applies to several concrete examples (see Refs.[5,7,12,16,20–23]).

The paper is organized as follows. In the next section we recall the basic definitions
and properties of linear control systems on Lie groups and Frenet systems of curves in
homogeneous spaces. InSection 3, we examine variational problems defined by invariant
Lagrangians for linear control systems on Lie groups. From a geometrical viewpoint we
deal withkth order variational problems for curves of constant type in a homogeneous space
that depend on the generalized curvatures. Since all the derived systems have constant rank,
the extremal curves of the variational problem are the projections of the integral curves of
the Euler–Lagrange system. Therefore, we focus our attention on the momentum space and
on the Euler–Lagrange system. First we investigate the geometry of the momentum space
Y of a regular invariant Lagrangianof a linear control system of a Lie groupG. We show
thatY is of the formG×F, whereF is an immersed submanifold ofg× g∗ (we callF the
phase spaceof the variational problem). Next we study non-degenerate Lagrangians. We
prove that ifL is non-degenerate, then the phase spaceF can be realized as a submanifold
of g∗. We define the linearized phase portraits and the Legendre transform and analyze the
structure of the characteristic vector field of a non-degenerate Lagrangian. InSection 4we
studycoisotropic Lagrangians. We prove that the integral curves of the characteristic vector
field passing through a point of the bifurcation set are orbits of one-parameter subgroups
of the symmetry groupG. Therefore, from this point on, we focus our attention on the
regular partYr of the momentum space. We show thatYr is of the formG × Fr, where
Fr is an open subset of the phase space. We prove thatFr intersects the coadjoint orbits,
O(µ), of G transversally and thatPr(µ) = Fr ∩ O(µ) are smooth curves (referred to
as thephase portraits). Subsequently we introduce the moment mapJ : Yr → g∗ and
prove that the Marsden–Weinstein reductionJ−1(µ)/Gµ can be naturally identified with
the phase portraitPr(µ). We also show that everyµ ∈ J(Yr) is a regular element ofg∗
which implies that the isotropy subgroupsGµ are Abelian, for everyµ ∈ J(Yr). We then
examine more closely the phase flowφ and the characteristic vector fieldξ. We prove
that if the Lie algebrag possesses a non-degenerate Ad-invariant inner product then the
differential equation fulfilled by the phase flow can be written in Lax form. From the
Noether conservation theorem we know that the characteristic vector fieldξ is tangent to
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the fibersJ−1(µ) of the moment map. We define a canonical connection formθµ on the
Marsden–Weinstein fibrationsJ−1

r (µ) → P(µ) whose horizontal curves are the integral
curves of the characteristic vector field. Since the base is one-dimensional and the structure
groupGµ is Abelian, the horizontal curves can be found by a single quadrature. This
shows that the extremal curves of an invariant coisotropic Lagrangian are integrable by
quadratures. As a byproduct, we prove that if the canonical connectionθµ is complete,
which is generically the case whenµ is a regular value of the moment map, then the
connected components ofJ−1

r (µ) are Euclidean cylinders and the characteristic vector
field ξ can be linearized onJ−1

r (µ). We would like to stress that the connection formθµ

can be constructed explicitly from the data of the problem, so that the integration process
can be performed in a completely explicit way.

Finally, in two appendices, we summarize the background material that we use from
the theory of Pfaffian differential systems and constrained variational problems in one
independent variable.

Throughout the paper, we demonstrate how our general results apply to the specific ex-
ample of isotropic curves inR(2,1). We show how to derive the Frenet system for such
curves, and show that the variational problem is coisotropic if we take the Lagrangian to
be a linear function of the curvature. We prove that the phase portraits may be parameter-
ized in terms of elliptic functions, and construct the sections of the Marsden–Weinstein
fibration required to reduce the integration to quadratures. Other concrete geometrical
examples where the general scheme described in this paper are implemented may be
found in [5,6,20–23]. In all of these cases the generic phase portrait is an elliptic curve,
so that the extremal curves can be integrated in terms of elliptic functions and elliptic
integrals.

2. Linear control systems on Lie groups and Frenet systems in homogeneous spaces

2.1. Linear control systems on Lie groups

LetG be a Lie group with Lie algebrag. The natural pairing betweeng andg∗ will be
denoted by(η, V) ∈ g∗ × g→ 〈η;V 〉 ∈ R. We letΘ ∈ g∗ ⊗ g be the Maurer–Cartan form
ofG. If we fix a basis(e0, . . . , en) of g, thenΘ = θJ ⊗ eJ , where(θ0, . . . , θn) is the basis
of g∗ dual to(e0, . . . , en).

Definition 2.1. Let A ⊂ g denote an affine subspace ofg of the formP + a = {P + A :
A ∈ a}, whereP ∈ g anda ∈ Grh(g)with P /∈ a. The set of such affine subspaces ofgwill
be denoted asPh(g). We callM := G× A theconfiguration spaceof the affine subspace
A, and denote byπG : M → G andπA : M → A the natural projections onto the two
factors.

We now fix a left-invariant formω ∈ g∗ such that〈ω;P〉 = 1 andω ∈ a⊥ (i.e.〈ω;A〉 = 0,
for all A ∈ a). We may fix a basis(e0, . . . , en) of g such that

P = e0, a = span(e1, . . . , eh),
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and we letθ0, . . . , θn be the components of the Maurer–Cartan form with respect to
(e0, . . . , en). Such a basis may be chosen so thatθ0 = ω. Using the projectionπG, we
may pull-back the differential 1-formsω, θ1, . . . , θn toM, to define a set of 1-forms onM
which, by the standard abuse of notation, we again denote byω, θ1, . . . , θn ∈ Ω1(M).1 Let
k1, . . . , kh denote the affine coordinates onA defined by the affine frame(P, e1, . . . , eh).
We then define the 1-forms

ηj :=
{
θj − kjω, j = 1, . . . , h,

θj, j = h+ 1, . . . , n.

We then define the Pfaffian differential system(A, ω) onM to be the Pfaffian differential
ideal generated by the 1-forms{ηj : j = 1, . . . , n} with the independence condition given
byω.2

Definition 2.2. (A, ω) is the linear control system associated toA ∈ Ph(g).

Note that the idealA has constant rank, being generated by a rankn sub-bundle,Z ⊂
T ∗(M). The sub-bundleZ is of the formG× Z, where

Z = {(Q, η) ∈ A× g∗ : 〈η;Q〉 = 0} ⊂ A× g∗,
and where the embedding ofZ as a sub-bundle ofT ∗(M) is given by

(g,Q, η) ∈ G× Z→ π∗G(η)|(g,Q) ∈ T ∗(g,Q)M.
We may use the left-invariant trivialization to identifyT(G) andG× g. The tangent space
toM at (g,Q) is then identified withg ⊕ a. With this identification at hand, the integral
elements of(A, ω) at(g,Q) are the one-dimensional subspaces ofg⊕a of the form(Q, v),
wherev ∈ a.

A smooth curveγ = (α, β) : (a, b)→ M, where(a, b) ⊆ R is a parameterized integral
curve of the control system(A, ω) if and only if α : (a, b)→ G is a solution of the linear
systemα(t)−1α′(t) = β(t). Thus, as a control system, the points of the affine spaceA

play the role of the inputs. Note that if we assign a smooth mapβ : (−ε, ε) → A and a
point g0 ∈ G, then there exists a unique integral curve of the control system,γ = (α, β),
satisfying the initial conditionα(0) = g0.

Consider the linear subspacesak ⊂ g defined recursively by

a1 = a + span(P), a2 = a1+ [a1, a1], . . . , ak = ak−1+ [ak−1, ak−1].

The smallest integerN such thataN = aN+1 is called thederived lengthof A. Note that
Zs := A × a⊥s is contained inZ, for s = 1, . . . , N. We setZs = M × Zs, s = 1, . . . , N

1 We will generally follow the usual practice in the method of moving frames and omit the pull-back signs to
simplify notation. This should cause no confusion as we will clearly specify the manifolds that we are working
on.

2 More invariantly, if we fixω ∈ g∗ with ω ∈ a⊥ and 〈ω;P〉 = 1, then we define theg-valued 1-form
Θ̂ ∈ Ω1(M, g) by the formulaΘ̂|(g,Q) := π∗G(Θ − Qω)|(g,Q). A is then the differential ideal generated by

{〈µ; Θ̂〉 : µ ∈ g∗}.
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and we consider the sequence of sub-bundles

ZN ⊂ ZN−1 ⊂ · · · ⊂ Z1 ⊂ Z.
If we denote byAs the Pfaffian differential ideal generated byZs, then

AN ⊂ AN−1 ⊂ · · · ⊂ A1 ⊂ A
is the derived flag of the control system (see Refs.[4,12] for more details about derived
flags). We have thus proved the following proposition.

Proposition 2.3. All the derived systems of a linear control system on a Lie group G have
constant rank.

2.2. Frenet systems in homogeneous spaces

LetH ⊂ G be a closed Lie subgroup and consider the homogeneous spaceG/H . The
left-action ofG onG/H induces an action ofG on the jet spaceJk(R,G/H), called the
kth prolongationof the action ofG onG/H .

Definition 2.4. A differential relation(in one independent variable) of order konG/H is
a submanifoldS of Jk(R,G/H) such that dt|S is nowhere vanishing. We define the Pfaffian
differential system(I,dt) onS, given by restriction toS of the canonical contact system on
Jk(R,G/H). A smooth curveγ : (a, b)→ G/H is said to be oftype Sif jk(γ)|t ∈ S, for
all t ∈ (a, b).

Note that the integral curves of the Pfaffian differential system(I,dt) are thek-order jets
jk(γ) of curvesγ : (a, b)→ G/H that satisfy the differential relationjk(γ)|t ∈ S, for all
t ∈ (a, b).

Definition 2.5. A Frenet systemof orderk onG/H is a triple(S,A, Φ), where:

(a) S ⊂ Jk(R,G/H) is aG-invariant differential relation of orderk endowed with the
induced contact system(I,dt),

(b) A ∈ Ph(g),
(c) Φ : S → M is a smooth equivariant map fromS onto an open subsetΦ(S) of M =
G× A, the configuration space,

with the properties that:

• If γ : (a, b)→ G/H is a smooth curve of typeS thenΓ = Φ ◦ jk(γ) is an integral curve
of the control system(A, ω).
• If Γ : (a, b) → M is an integral curve of(A, ω) such that Im(Γ) ⊂ Φ(S), thenγ =
πG/H ◦ Γ : (a, b)→ G/H is a curve of typeS andΓ = Φ ◦ jk(γ).

The method of moving frames[11,12]gives an algorithmic procedure for the construction
of the Frenet systems for curves of constant type in homogeneous spaces (see[10,17,18]).
We refer the reader to[12] for the explicit construction of the Frenet system of generic
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curves in the affine spaceR3, to [7,23] for the Frenet system of generic curves inRP
2,

to [20,26] for the Frenet system of generic curves in the conformal 3-sphere and to[22]
for the Frenet systems of generic Legendrian curves in the strongly pseudo-convex real
hyperquadricQ3 of CP

2.

Definition 2.6. Let F := πG ◦ Φ : S → G andK := πA ◦ Φ : S → A denote the two
components of the mapΦ. We callF theFrenet mapandK thecurvature map.

Let γ : (a, b)→ G/H be a curve of typeS, thenΓ = Φ ◦ jk(γ) : (a, b)→ M is called
thecanonical liftof γ. The maps

Fγ := F ◦ jk(γ) : (a, b)→ G, Kγ := K ◦ jk(γ) : (a, b)→ A

are called theFrenet frame fieldand thecurvature functionof γ, respectively.

Definition 2.7. The generalized arc-lengthof a curveγ : (a, b) → G/H of type S is
the smooth functionsγ : (a, b) → R, unique up to a constant, such that dsγ = Γ ∗(ω),
whereΓ : (a, b) → M is the canonical lift ofγ. Each curveγ ⊂ G/H of typeS may
be parameterized in such a way that dsγ = dt. In this case, we say that the curveγ is
normalized.

Proposition 2.8. Let (S,A, Φ) be a Frenet system. ThenΦ(S) = G×UΦ, whereUΦ is an
open subset ofA.

Proof. We setUΦ = πA(Φ(S)). Thus,UΦ is an open subset ofA such thatΦ(S) ⊆ G×UΦ.
Take any(g0,Q0) ∈ G×UΦ. SinceQ0 ∈ UΦ then there existsg1 ∈ G such that(g1,Q0) ∈
Φ(S). Now letΓ : (−ε, ε) → M be an integral curve of the control system(A, ω) such
thatΓ(0) = (g1,Q0). SinceΦ(S) is an open set we may, by restricting the value ofε if
necessary, assume that Im(Γ) ⊂ Φ(S). Then, the projection ofΓ ontoG/H is a curve
γ : (−ε, ε) → G/H of typeS such thatΓ = Φ[jk(γ)]. Using theG-invariance ofS it
follows thatg0g

−1
1 γ is another curve of typeS. Thus, from the equivariance ofΦ it follows

thatg0g
−1
1 Γ(0) = (g0,Q0) belongs toΦ(S). This shows thatG× UΦ ⊆ Φ(S). �

The elements of the open subsetUΦ may therefore be considered as the “geometrical
inputs” of the control system(A, ω). In particular, the curvature functionK gives a complete
set of local differential invariants for curves of typeS. More precisely, ifγ, γ̃ : (a, b) →
G/H are normalized curves of typeS with Kγ = Kγ̃ , thenγ andγ̃ are congruent to one
other, in the sense that there exists ag ∈ G such thatgγ(t) = γ̃(t), for all t ∈ (a, b).
Moreover, given any smooth mapK : (a, b) → UΦ ⊂ A there exists a normalized curve
γ : (a, b)→ G/H of typeS, unique up to congruence, such thatKγ = K.

If we fix an affine frame(P, e1, . . . , eh) of A and if we letk1, . . . , kh be the corresponding
coordinates, we may identify the configuration spaceM withG×R

h. Thus, we may write
Kγ = (k1

γ , . . . , k
h
γ ), wherek1

γ , . . . , k
h
γ are smooth functions that depend on thek-jet of γ.

These functions can be viewed as thegeneralized curvaturesof γ.
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2.3. Isotropic curves inR(2,1)

An example that will illustrate our considerations concerns variational principles for
isotropic curves in three-dimensional Minkowski space. LetR

(2,1) denote Minkowski
3-space endowed with the Lorentzian inner product

〈v,w〉 = −(v1w3+ v3w1)+ v2w2 =: gijv
iwj.

We fix the spatial orientation by requiring that the standard basis(e1, e2, e3) is positively
oriented, and we fix the time orientation defined by the positive light cone

L+ = {v ∈ R
(2,1) : 〈v, e1+ e3〉 < 0}.

Let G be the restricted Poincaré groupE(2,1), i.e. the group of isometries ofR(2,1) that
preserve the given orientations. The groupG may conveniently be described as the space
of pairsg = (q,A) whereq ∈ R

(2,1) andA = (A1, A2, A3) is a 3× 3 matrix such that

det(A1, A2, A3) = 1, 〈Ai,Aj〉 = gij , A1, A3 ∈ L+.
We letg denote the Lie algebra ofG, consisting of all matrices of the form

X(q, v) =




0 0 0 0

q1 v1
1 v1

2 0

q2 v2
1 0 v1

2

q3 0 v2
1 −v1

1


 .

We now define the Maurer–Cartan formΩ ∈ Ω1(G, g), which takes the form

Ω =




0 0 0 0

ω1 ω1
1 ω1

2 0

ω2 ω2
1 0 ω1

2

ω3 0 ω2
1 −ω1

1


 ,

such that

dq = ωiAi, dAi = ωji Aj, i = 1,2,3.

Differentiating these relations, we obtain the structure equations

dωi = −ωij ∧ ωj, dωik = −ωij ∧ ωjk, i, k = 1,2,3.

Recall that the Maurer–Cartan formsω1, ω2, ω3, ω1
1, ω

2
1, ω

1
2 are linearly independent and

generate the space,g∗, of left-invariant 1-forms onG.

Definition 2.9. A null (or isotropic) curvein R
(2,1) is a smooth parameterized curve

α : (a, b) ⊂ R→ R
(2,1)
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such thatα′(t) ∈ L+ for all t ∈ (a, b). We shall assume thatα is without flex points, in the
sense that

α′(t) ∧ α′′(t) �= 0 ∀t ∈ (a, b).

The linear differential formωα := ‖α′′(t)‖1/2 dt is nowhere vanishing, and is invariant
under changes of parameter and the action of the groupG. Without loss of generality we
may assume thatα is normalized, in the sense that

‖α′′(t)‖1/2 = 1 ∀t ∈ (a, b).
(This condition fixes the parametert up to an additive constant.) Thecurvatureof α is
defined by

k(t) = −1
2‖α′′′(t)‖2 ∀t ∈ (a, b).

At each point of the curve we may define the frameg(t) = (α(t), A(t)) ∈ G given by

A1(t) = α′(t), A2(t) = α′′(t), A3(t) = α′′′(t)+ 1
2‖α′′′(t)‖2α′(t).

This frame defines a canonical lift

g : t ∈ (a, b)→ g(t) = (α(t), A(t)) ∈ G
of the curveα to the groupG, referred to as theFrenet frame fieldalongα. An application
of the method of moving frames shows that the Frenet frame field is the unique lift ofα to
G with the property that

g∗(Ω) =




0 0 0 0

1 0 κ 0

0 1 0 κ

0 0 1 0


 dt.

We illustrate the construction of the Frenet system for isotropic curves inR
(2,1), viewed as

a homogeneous space of the groupG. Let

t, X = (x1, x2, x3), X1 = (x1
1, x

2
1, x

3
1), X2 = (x1

2, x
2
2, x

3
2), X3 = (x1

3, x
2
3, x

3
3)

be the standard coordinates on the jet spaceJ3(R,R(2,1)) ∼= R×R
(2,1)×R

(2,1)×R
(2,1)×

R
(2,1). The differential relationS ⊂ J3(R,R(2,1)) is defined by

X1 ∈ L+, ‖X2‖ = 1, (X1, X2) = (X2, X3) = 0, X1 ∧X2 ∧X3 �= 0.

Holonomic sections ofS are third-order jetsj3(α) of normalized isotropic curvesα :
(a, b)→ R

(2,1). We defineκ : S → R by

κ(t, X,X1, X2, X3) = −1
2‖X3‖2.

κ[j3(α)] is then the curvature of the isotropic curveα.
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The affine spaceA = P + a ⊂ g is then the straight line

k ∈ R→ Q(k) = e0+ ke1 ∈ g,
where

e0 =




0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0


 , e1 =




0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0


 .

It is convenient to identify the configuration spaceM = G × A with G × R by means of
the map

(g, e0+ ke1) ∈ G× A→ (g, k) ∈ G× R.

With this identification at hand, the linear control system(A, ω) is generated by the linear
differential forms

η1 = ω1
2 − kω, η2 = ω1

1, η3 = ω2
1 − ω, η4 = ω2, η5 = ω3,

along with independence condition

ω = ω1.

We now consider a smooth curveΓ : (a, b)→ M and let

g : t ∈ (a, b)→ (α(t), A(t)) ∈ G, k : t ∈ (a, b)→ k(t) ∈ A,

be the two components ofΓ . ThenΓ is an integral curve of the control system(A, ω) if
and only ifg : (a, b)→ G is the Frenet field along the isotropic curveα : (a, b)→ R

(2,1),
andk is the curvature of the curveα. The mappingΦ : S → M = G × R linearizing the
differential relationS is defined by

S : (t, X,X1, X2, X3) ∈ S → ((X;X1, X2, X3+ 1
2‖X3‖2X1),−1

2‖X3‖2) ∈ M.

Remark 2.10. Using the structure equations forE(2,1) we find that

dω = (κη4− η2) ∧ ω − η1 ∧ η4, (1a)

dη1 = −π ∧ ω + η1 ∧ η2+ κη1 ∧ η4, (1b)

dη2 = (κη3− η1) ∧ ω − η1 ∧ η3, (1c)

dη3 = (2η2− κη4) ∧ ω + η1 ∧ η4+ η2 ∧ η3, (1d)

dη4 = (κη5− η4) ∧ ω − η1 ∧ η5, (1e)

dη5 = η4 ∧ ω + η2 ∧ η5− η3 ∧ η4, (1f)

where

π = dκ + κ2η4.
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2.4. Coadjoint action ofE(2,1)

For later convenience, we now discuss the coadjoint action ofE(2,1) on e(2,1)∗, the
dual of its Lie algebra. Our discussion follows the discussion of the coadjoint representation
of E(3) given in Guillemin and Sternberg[14].

Using the Maurer–Cartan forms, we identifyg∗ with R
(2,1)⊕R

(2,1) by means of the map

(p, v) ∈ R
(2,1) ⊕ R

(2,1)→ piω
i − v1ω2

1 + v2ω
1
1 + v3ω

1
2 ∈ g∗.

The coadjoint action ofG ong∗ then takes the form

g · (p, v) = (Ap,Av− (Ap)× q), (2)

for all

g =
(

1 0

q A

)
∈ G = E(2,1),

where× denotes the vector cross product

〈v× w, u〉 = det(v,w, u) ∀v,w, u ∈ R
(2,1).

We now define the map

C : (p, v) ∈ g∗ → (‖p‖2, 〈p, v〉) ∈ R
2,

the components which,C1 andC2, generate the space of Casimir functions. We recall the
following standard material:

• LetG be a Lie group, andg∗ the dual of the Lie algebra ofG. Letµ ∈ g∗. Theisotropy
groupof G atµ is the closed subgroup ofG defined by

Gµ := {g ∈ G : Ad∗(g)µ = µ} = {g ∈ G : 〈µ;Ad(g−1)A〉 = 〈µ;A〉, ∀A ∈ g}.
• The Lie algebra ofGµ is

gµ = {A ∈ g : ad∗(A)µ = 0} = {A ∈ g : 〈µ; [A,B]〉 = 0, ∀B ∈ g}.
• Therankof the groupG is defined as

rank(G) = inf {dim(gµ) : µ ∈ g∗}.
• An elementµ ∈ g∗ is regular if dim(gµ) = rank(G), otherwiseµ is asingularelement

of g∗. The set of regular elements ofg∗ will be denoted byg∗r , while g∗s will denote the
set of singular elements.
• By a theorem of Dixmier (cf.[8,9]), the isotropy groupGµ and the isotropy Lie algebra
gµ of a regular elementµ ∈ g∗r are Abelian.

In the case ofE(2,1), g∗r is the open subset ofg∗ consisting of elements

g∗r = {(p, v) ∈ g : p �= 0}.
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The co-adjoint orbit,O(p0,v0), through a regular element(p0, v0) ∈ g∗r is therefore the
four-dimensional sub-manifold

O(p0,v0) = {(p, v) ∈ R
(2,1) ⊕ R

(2,1) : ‖p‖2 = ‖p0‖2, 〈p0, v0〉 = 〈p, v〉}.
There are three types of regular orbit:

• orbits of positive type:O(p0,v0) with C1 = ‖p0‖2 > 0;
• orbits of negative type:O(p0,v0) with C1 = ‖p0‖2 < 0;
• orbits of null type:O(p0,v0) with C1 = ‖p0‖2 = 0;

The orbits of negative and null type also break into sub-classes according to whetherp0 is
future-directed, with〈p0, e1+ e3〉 < 0, or past-directed, with〈p0, e1+ e3〉 > 0.

3. Variational problems

3.1. Non-degenerate invariant variational problems

Definition 3.1. Given an affine subspaceA ∈ Ph(g), aninvariant Lagrangian of typeA is
a smooth real-valued functionL : A→ R.

An invariant LagrangianL gives rise to a variational problem defined on the integral
curves of the linear control system(A, ω). From this point of view the LagrangianL is
considered as acost function. It is then an optimal control problem to minimize the cost

L : Γ →
∫
γ

Γ ∗(Lω)

among the integral curves of(A, ω). If (A, ω) comes from a Frenet system(S,A, Φ) on
the homogeneous spaceG/H then the LagrangianL defines a geometric action functional
L̃ : S→ R acting on the space of the normalized curves of typeS:

L̃ : γ ∈ S→
∫
γ

L(K[jk(γ)(t)])dt.

Note that the geometric action functionalL̃ depends only on the generalized curvatures of
γ.

Example 3.2. The simplest invariant variational problem for a Frenet systems is thearc-
length functional, which is defined by a constant Lagrangian (see[7,12,20,22,23]for
more details about the arc-length functionals for generic curves in the conformal and
pseudo-conformal three-dimensional sphere, in the real projective plane and in the affine
plane). Another typical example of an invariant Lagrangian is theKirchhoff variational
problemfor the Frenet system of generic curves inR

3, defined by the action functional

L : γ ⊂ R
3→

∫
γ

(κ2(u)+ aτ(u))du.
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The extremal curves are the canonical lifts of the Kirchhoff elastic rods ofR
3. Whena =

0, we get the total squared curvature functional. Other examples of invariant variational
problems for curves inR3 have been considered in Ref.[19].

Given an invariant LagrangianL : A → R, we construct the corresponding affine
sub-bundleZ̃ ⊂ T ∗(M) over the configuration spaceM = G× A. The fiber ofZ̃ over the
point (g,Q) ∈ M is given by the affine space

Z̃|(g,Q) = {η ∈ g∗ : 〈η;Q〉 = L(Q)}.
Note thatZ̃ is of the formG× Z̃, where

Z̃ = {(Q, η) ∈ A× g∗ : 〈η;Q〉 = L(Q)}.
The Liouville 1-formψ is given by

ψ|(g,Q,η) = π∗(η)|(g,Q,η) ∀(g,Q, η) ∈ Z̃,
whereπ : G× Z̃→ G denotes the projection onto the first factor.

Remark 3.3. Pick a basis(e0, e1, . . . , eh, eh+1, . . . , en) of g such that

P = e0, a = span(e1, . . . , eh), ω = θ0,

where(θ0, . . . , θn) is the dual basis ofg∗. We use the following index range:i, j = 1, . . . , h,
a, b = h+ 1, . . . , n. The map

(g, k, λ) ∈ G× R
h × R

n→ (g, e0+ kjej, L(e0+ kjej)ω
+ λj(θj − kjω)+ λaθa) ∈ Z̃

gives an explicit identification betweenG × R
h × R

n and Z̃. With this identification at
hand, the tautological 1-form can be written as

ψ = (L(k1, . . . , kh)− kjλj)ω + λjθj + λaθa.

Definition 3.4. An invariant LagrangianL : A→ R is said to beregular if the correspond-
ing variational problem(A, ω, L) is regular, i.e. if the Cartan system ofΨ = dψ, with the
independence conditionω, is reducible (seeDefinition A.6). For a regular Lagrangian we
denote byY ⊂ Z̃ the momentum space of the variational problem(A, ω, L).

Remark 3.5. We have seen that all the derived systems of(A, ω) have constant rank. This
implies that the extremal curves of a regular invariant variational problem are the projections
of the integral curves of the Euler–Lagrange system onY (cf. [3]).

Proposition 3.6. LetL : A→ R be a regular Lagrangian with momentum space Y. Then
Y = G× F, whereF is an immersed submanifold ofA× g∗.

Proof. First we claim that the momentum space,Y , isG-invariant. To show this, for any
g ∈ G, we consider the submanifoldg ·Y ⊂ Z̃. TheG-invariance of the exterior differential
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formsψ, Ψ andω implies that left translationLg : Z̃ → Z̃ sends integral elements of
(C(Ψ), ω) into integral elements of(C(Ψ), ω). Hence, for every pointp ∈ g · Y , there exists
an integral element of(C(Ψ), ω) tangent tog · Y . Since the momentum spaceY is maximal
with respect to this property, it follows thatg · Y ⊆ Y . Thus the groupG acts onY . Since
this action is free and proper, the quotient spaceF = Y/G exists as a manifold. The natural
projectionπ : Y → F is constant along the fibers of the map(g,Q, η) ∈ Y → (Q, η) ∈
A× g∗. Thus it induces a smooth one-to-one immersionj : F→ A× g∗. We conclude the
proof by observing that the map(id, j) : G× F→ Y is a smooth diffeomorphism. �

Definition 3.7. We callF thephase spaceof the system. Note that a pointp ∈ F is of the
form p = (Q, η), whereQ ∈ A, η ∈ g∗. We define the maps

Λ : (Q, η) ∈ F→ η ∈ g∗, H : (Q, η) ∈ F→ Q ∈ A ⊂ g.
We refer toΛ as theLegendre transformandH as theHamiltonian. LetF(p) := Tp(F) ⊂
a ⊕ g∗ be the tangent space ofF atp. We then define

R(p) := dΛ|p[F(p)] ⊂ g∗, S(p) := dH|p[F(p)] ⊂ a ∀p ∈ F.

Definition 3.8. A regular invariant LagrangianL : A→ R is said to benon-degenerateif
the momentum spaceY is odd-dimensional, of dimension 2m+ 1, and if the restriction of
the canonical 2-formΨ to Y , ΨY , has the property thatω ∧ (ΨY )m is non-vanishing.

Examples of invariant non-degenerate variational problems include the total squared
curvature functional in two- and three-dimensional space forms[5,12], the Kirchhoff varia-
tional problem inR3, the Poincareé and the Delaunay functionals[12,16,21], the projective,
the conformal and the pseudo-conformal arc-length functionals (cf.[7,20,22]).

Given a non-degenerate variational problem, it follows thatω∧ (ΨY )m defines a volume
form onY , and thatΨY is of maximal rank onY . Therefore there exists a unique vector field
ξ ∈ X(Y) such thatiξ(ΨY ) = 0 andω(ξ) = 1.

Definition 3.9. ξ is thecharacteristic vector fieldof the non-degenerate variational problem
(A, ω, L).

If (A, ω, L) is non-degenerate then the Euler–Lagrange system is simply the Cartan
system of the canonical 2-form restricted to the momentum space:E = C(ΨY ). Therefore,
for such variational problems, the integral curves of the Euler–Lagrange system are the
integral curves of the characteristic vector fieldξ (see Ref.[12]). We therefore have the
following theorem.

Theorem 3.10. LetΓ : (a, b)→ Y be an integral curve of the characteristic vector field
ξ of a non-degenerate variational problem(A, ω, L). Thenγ = πM ◦Γ : (a, b)→ M is a
critical point of the action functionalL.

Proposition 3.11. If L is non-degenerate then the Legendre transformΛ : F → g∗ is an
immersion.
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Proof. Let ξ be the characteristic vector field of the momentum space. The Liouville form
ψ, the canonical 2-formΨ and the independence conditionω areG-invariants, therefore
the characteristic vector field is alsoG-invariant. Sinceξ|(g,p) ∈ T(g,p)Y ∼= g ⊕ F(p) ⊂
g⊕ a ⊕ g∗, this implies that there exist smooth mapsAξ : F→ g andΦξ : F→ a ⊕ g∗
with the property that

ξ|(g,p) = Aξ(p)|g +Φξ(p) ∀(g, p) ∈ Y,
whereΦξ(p) ∈ F(p) for all p ∈ F. Sinceξ satisfies the transversality condition 1=
ω(ξ) = 〈ω;Aξ〉, thenAξ : F → g is a nowhere vanishing function. If we now consider
{0} ⊕ ker[dΛ|p] ⊂ g ⊕ F(p) then it is simple to check that every such vector lies in the
kernel of the canonical 2-formΨ . Since this null-distribution is generated byξ, we therefore
have

{0} ⊕ ker[dΛ|p] ⊂ span[Aξ(p)+Φξ(g)].
SinceAξ is non-vanishing, however, this holds if and only if ker[dΛ|p] = {0}. �

From now on we will assume that the Legendre transformΛ is a one-to-one immersion,
so that the phase space,F, can be considered as a submanifold (not necessarily embedded)
of g∗. Consequently, we will think of the momentum space as an immersed submanifold
of G × g∗. The notation introduced in the preceding paragraphs can then be simplified as
follows:

• the Legendre mapΛ is the inclusion ofF into g∗;
• the tangent spaceF(η) of F atη ∈ F is a linear subspace ofg∗ andR(η) = F(η);
• the tangent spaceT(g,η)(Y) is identified withg⊕ F(η) ⊂ g⊕ g∗;
• the Liouville form and the canonical 2-form onY are the restrictions toY of the Liouville

form and the standard symplectic form onT ∗(G);
• the characteristic vector fieldξ can be written as

ξ|(g,η) = Aξ(η)|g +Φξ(η) ∀(g, η) ∈ Y,
whereAξ : F→ g andΦξ : F→ g∗ are smooth functions such thatΦξ(η) ∈ F(η), for
all η ∈ F.

From now on, we will adhere to these simplifications.
With this notation at hand, we may use the left-invariant trivialization ofT(G) to identify

the tangent space

T(g,η)(Y) ∼= TgG⊕ TηF ∼= g⊕ F(η) ⊂ g⊕ g∗.
We then have the explicit isomorphism

A+ v ∈ g⊕ F(η)→ A|g + v ∈ T(g,η)(Y),
whereA ∈ g = Tid(G) andA|g = (Lg)∗A ∈ Tg(G). With this identification, the Liouville
formψ becomes the cross-section ofT ∗(Y) defined by

ψ|(g,η)(A+ v) = 〈η,A〉 ∀(g, η) ∈ Y ∀A+ v ∈ g⊕ F(η). (3)
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Then, from the standard formula

dψ(X, Y) = 1
2{X[ψ(Y)] − Y [ψ(X)] − ψ([X, Y ])},

it follows that the canonical 2-formΨ = dψ ∈ Ω2(Y) takes the form

Ψ |(g,η)(A+ v;B + w) = −1
2〈w;A〉 + 1

2〈ad∗(A)η+ v;B〉, (4)

for all η ∈ F and for allA+ v, B + w ∈ g⊕ F(η).

Definition 3.12. Given a left-invariant 1-formµ ∈ g∗, let O(µ) ⊂ g∗ be the coadjoint
orbit passing throughµ, and let O(µ) := ad∗(g)µ ⊂ g∗ denote the tangent space to the
orbit O(µ) atµ. The linearized phase portraitof the pointη ∈ F is the linear subspace
Π(η) := F(η) ∩ O(η) of g∗. The subsetP(µ) = F ∩ O(µ) is referred to as thephase
portrait of µ ∈ g∗.

The following result shows that the characteristic vector fieldξ may be written in terms
of the HamiltonianH:

Theorem 3.13. The characteristic vector fieldξ is given by

ξ|(g,η) = H(η)|g − ad∗[H(η)]η ∀(g, η) ∈ Y. (5)

Proof. Given a pointη ∈ F, we set

Ann(F(η)) = {A ∈ g : 〈v;A〉 = 0, ∀v ∈ F(η)}
and let

ρ(η) : Ann(F(η))→ O(η)

be the linear map

ρ(η) : A ∈ Ann(F(η))→ ad∗(A)η ∈ O(η). (6)

It then follows fromEqs. (3) and (4)that a tangent vectorA+v ∈ g⊕F(η) to the momentum
spaceY at the point(g, η) belongs to the kernel ofΨ if and only if

A ∈ ρ(η)−1(Π(η)), v = −ρ(η)A. (7)

We now let(g0, η0) ∈ Y and letΓ : (−ε, ε)→ Y be the integral curve of the characteristic
vector fieldξ with initial conditionΓ(0) = (g0, η0). We writeΓ(t) = (g(t), η(t)), where
g : (−ε, ε)→ G andη : (−ε, ε)→ F are smooth maps such that

g(t)−1g′(t)dt = g∗(Θ)|t , g−1(t)g′(t) = Aξ[η(t)], g(0) = g0, η(0) = η0.

On the other hand3

t ∈ (−ε, ε)→ (g(t),H[η(t)]) ∈ G× A = M
3 It is a general fact that ifπ : Y → M is the momentum space of a regular variational problem(I, ω, L) on the

configuration spaceM and ifΓ : (a, b)→ Y is an integral curve of the Euler–Lagrange system, thenγ = π ◦ Γ
is an integral curve of the Pfaffian differential system(I, ω) onM (see[12]).
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is an integral curve of the linear control system(A, ω). We then have

g∗(Θ)|t = H[η(t)]g∗(ω)|t = H[η(t)]dt|t .
Therefore, we conclude that

Aξ[η(t)] = H[η(t)] ∀t ∈ (−ε, ε).
Sinceξ belongs to the kernel ofΨ , we conclude fromEq. (7)that

Φξ[η(t)] = −ad∗[H(η(t))]η(t) ∀t ∈ (−ε, ε).
This yields the required result. �

Definition 3.14. Thephase flowis the flow of the vector fieldΦξ : η ∈ F→−ad∗[H(η)]η ∈
g∗.

Remark 3.15. We use the notationφξ : D ⊂ R × F→ F to indicate the phase flow. We
observe the following facts:

• The domain of definitionD of the phase flow is of the form

D = {(t, η) ∈ R× F : t ∈ (ε−(η), ε+(η))},
whereε− : F→ R

− ∪ {−∞} andε+ : F→ R
+ ∪∞.

• For everyη ∈ F, the curve

φη : (ε−(η), ε+(η))→ φξ(t, η) ∈ F
is the maximal integral curve ofΦξ with the initial conditionφη(0) = η.
• Φξ(η) ∈ Π(η) andφη(t) ∈ P(η), for everyη ∈ F and everyt ∈ (ε−(η), ε+(η)).
• If we fix a point(g0, η0) ∈ Y = G× F, then the maximal integral curve of the charac-

teristic vector fieldξ with the initial condition(g0, η0) is given by

Γ(g0,η0) : t ∈ (ε−(η0), ε
+(η0))→ (h(g0,η0)(t), φη0(t)) ∈ G× F,

whereh(g0,η0) is the (unique) solution of the equation

h−1h′ = H[φη0(t)], h(0) = g0.

• We setD̃ = {(t; (g, η)) ∈ R× Y : t ∈ (ε−(η), ε+(η))}. The flowΓ of the characteristic
vector fieldξ is the local one-parameter group of transformationsΓ : D̃ ⊂ R× Y → Y

given by

Γ(t, g, η) = (h(g,η)(t), φ(t, η)) ∀(t; (g, η)) ∈ D̃.

Remark 3.16. The phase flowφξ : D→ F satisfies theEuler equation

∂φξ

∂t

∣∣∣∣
(t,η)

= −ad∗[H[φξ(t, η)]]φξ(t, η), φξ(0, η) = η, ∀(t, η) ∈ D. (8)
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If there exists aG-equivariant isomorphismg ∼= g∗, then we can identifyg andg∗. (For
example, ifG is semisimple, then take the pairing defined by the Killing form ofg.) Using
this identification, the Euler equation can be written in the Lax form

∂φξ

∂t

∣∣∣∣
(t,η)

= −[H[φξ(t, η)], φξ(t, η)], φξ(0, η) = η, ∀(t, η) ∈ D.

Definition 3.17. We denote byFs = {η ∈ F : Φξ(η) = 0} the set of all fixed points of
the phase flow and byFr the complement ofFs. We callFs andFr thesingularand the
regular parts of the phase space, respectively. We callΣ = G × Fs ⊂ Y thebifurcation
setand refer toYr = Y \ Σ as theregular partof the momentum space. The intersection
Pr(µ) = Fr ∩ O(µ) ⊂ P(µ) is called theregular part of the phase portraitP(µ). The
connected component̃P(µ) of Pr(µ) containingµ is referred to as thereduced phase
portrait of µ.

The following result, which may be verified by applying the uniqueness theorems for
ordinary differential equations, characterizes integral curves of the characteristic vector
field that intersect the bifurcation set.

Proposition 3.18. Letp = (g, η) ∈ Σ be a point of the bifurcation set. The integral curve
Γξ(−, p) : R→ Y of the characteristic vector fieldξ passing through p is the orbit of the
one-parameter subgroup generated byH(η):

Γξ(t, p) = (exp(H(η)t)g, η) ∀t ∈ R.

This result implies that if(A, ω) comes from a Frenet system of curves inG/H , then
the curveγ ⊂ G/H of typeS that corresponds toΓξ(−, p), wherep ∈ Σ, has constant
curvature (i.e.Kγ = constant).

Since this result completely characterizes the behavior of integral curves that intersect
the bifurcation setΣ, we shall henceforth restrict our attention to the regular parts of the
phase space and momentum space. Therefore, to simplify the notation,F, Y andP(µ) will
be used to denote the regular parts of the phase space, the momentum space and the phase
portraits, respectively.

3.2. The Poincaré variational problem for isotropic curves inR
(2,1)

We now return to our example of isotropic curves inR
(2,1) considered inSection 2.3. Letm

be a non-zero constant and consider the variational problem on the spaceV of parameterized
integral curvesΓ : t ∈ (a, b)→ (g(t), k(t)) ∈ G×R of the Pfaffian system(A, ω) defined
by the action functional

Lm : Γ ∈ V→
∫
Γ

(1+mk)ω.

Geometrically, this amounts to an analogue of the Poincaré variational problem where we
minimize the arc-length functional (defined by the integral of the canonical line-element
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of the null curve) amongst normalized null curvesα ⊂ R
(2,1) subject to the additional

constraint that the integral of the curvaturek along the curve be held constant.
The affine sub-bundlẽZ ⊂ T ∗(M) is given byM × Z̃, whereZ̃ ⊂ g ⊕ g∗ is the

submanifold consisting of all(Q(k), η) ∈ A ⊕ g∗ such that〈η;Q(k)〉 = 1 + mk. (See
Section 2.3for the definition of the mapQ : R→ g.) Therefore(Q(k), η) belongs toZ̃ if
and only if

η = η(k, λ1, . . . , λ5) := (1+mk)ω + λ1η
1+ λ2η

2+ λ3η
3+ λ4η

4+ λ5η
5,

whereλ1, . . . , λ5 ∈ R. For simplicity, we identifyZ̃ with G× R
6 by means of the map

(g : k, λ1, . . . , λ5) ∈ G× R
6→ (g,Q(k), η(k, λ1, . . . , λ5)) ∈ Z̃.

Thus the Liouville form onZ̃ is given by

ψ = (1+mk)ω + λ1η
1+ λ2η

2+ λ3η
3+ λ4η

4+ λ5η
5.

From the structure(1), we find that

Ψ ≡mπ ∧ ω − (1+mκ)η2 ∧ ω +
∑

dλα ∧ ηα − λ1π ∧ ω + λ2(κη
3− η1) ∧ ω

+ λ3(2η
2− κη4) ∧ ω + λ4(κη

5− η3) ∧ ω + λ5η
4 ∧ ω,

whereΨ := dψ and where≡ denotes equality modulo span({ηα ∧ ηβ}α,β=1,...,5). Let

(∂ω, ∂η1, . . . , ∂η5, ∂λ1, . . . , ∂λ5, ∂π)

denote the parallelization of̃Z dual to the coframing

(ω, η1, . . . , η5,dλ1, . . . ,dλ5, π).

We then have

i∂λi Ψ = ηi, i = 1, . . . ,5,

along with

i∂ωΨ ≡ −α, i∂πΨ ≡ −β, i∂
ηi
Ψ ≡ −βi, i = 1, . . . ,5,

where

α = (m− λ1)dk, (9a)

β = (m− λ1)ω, (9b)

β1 = dλ1+ λ2ω, (9c)

β2 = dλ2+ (1+mk− 2λ3)ω, (9d)

β3 = dλ3+ (λ4− kλ2)ω, (9e)

β4 = dλ4+ (kλ3− λ5− k)ω, (9f)

β5 = dλ5− kλ4ω, (9g)
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and where≡ denotes equality modulo span(η1, . . . , η5). From these equations, we deduce
that the Cartan system(C(Ψ), ω) is generated by the differential 1-forms(η1, . . . , η5, α, β,

β1, . . . , β5).

Theorem 3.19. The momentum space,Y , is the nine-dimensional sub-manifold ofZ̃ defined
by the equations

λ2 = λ1−m = λ3− 1
2(1+mk) = 0,

and the Euler–Lagrange system(E, ω) is the Pfaffian differential system on Y with inde-
pendence conditionω generated by the linear differential forms(η1, . . . , η5, σ1, σ2, σ3),
where

σ1 = 1
2mdk + λ4ω, σ2 = dλ4− (λ5+ 1

2k(1−mk))ω, σ3 = dλ5− kλ4ω.

Proof. We letV1 ⊂ T(Z̃) be the sub-variety of one-dimensional integral elements of the
Cartan system(C(Ψ), ω) and denote bỹZ1 ⊂ Z̃ the projection ofV1 under the bundle map
T(Z̃) → Z̃. FromEqs. (9a) and (9b)we then deduce that̃Z1 is the submanifold defined
by λ1 = m. Denote byC(Ψ)1 the restriction toZ̃1 of the Cartan system. ThenC(Ψ)1 is
generated by the linear differential forms(η1, . . . , η5, λ2ω, β2, . . . , β5). We then consider
the sub-varietyV2 ⊂ T(Z̃1) consisting of integral elements of(C(Ψ)1, ω) and letZ̃2 ⊂ Z̃1
denote the projection ofV2. We therefore have that̃Z2 is the sub-manifold of̃Z1 defined
by λ2 = 0. Denote byC(Ψ)2 the restriction toZ̃2 of C(Ψ)1. ThenC(Ψ)2 is generated by the
linear differential forms(η1, . . . , η5, (1+mk−2λ3)ω, β3, β4, β5). We proceed as above and
letV3 ⊂ T(Z̃2) be the sub-variety of integral elements of(C(Ψ)2, ω) and definẽZ3 ⊂ Z̃2 to
be the image ofV3 under the projectionT(Z̃2)→ Z̃2. It follows thatZ̃3 is the sub-manifold
of Z̃2 defined by the equationλ3 = (1/2)(1+mk) and that the restrictionC(Ψ)3 of C(Ψ)2
to Z̃3 is the Pfaffian differential system generated by(η1, . . . , η5, σ1, σ2, σ3). If we let
V4 ⊂ T(Z̃3) be the set of integral elements of(C(Ψ)3, ω) then the bundle mapV4→ Z̃3 is
surjective. HenceY = Z̃3 and(C(Ψ)3, ω) is the reduced space of(C(Ψ), ω). �

Corollary 3.20. The momentum space Y associated with the Poincaré variational problem
for isotropic curves inR(2,1) is rank3, affine sub-bundleY = G×F ⊂ T ∗(G) ∼= G× g∗,
whereF ⊂ g∗ is defined by

F = 1
2(ω

1+ ω2
1)+mω1

2 + span(ω2
1 − ω1, ω2, ω3).

The variational problem is non-degenerate, and the characteristic vector field takes the
form

ξ = ∂ω − 2λ4

m
∂k − λ4∂λ3 +

(
λ5+ 1

2
k(1−mk)

)
∂λ4 + kλ4∂λ5. (10)

Proof. It follows from the preceding theorem that the restriction of the Liouville to the
momentum space takes the form

ψY = (1+mk)ω +mη1+ 1
2(1+mk)η3+ λ4η

4+ λ5η
5

= 1
2(ω

1+ ω2
1)+mω1

2 + 1
2mk(ω2

1 − ω1)+ λ4ω
2+ λ5ω

3. (11)
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The form ofY andF follow directly from this equation. The dimension ofY is equal to 9,
and a straightforward calculation shows that

ω ∧ (ΨY )4 = −12m2ω ∧ dk ∧ dλ4 ∧ dλ5 ∧ η1 ∧ η2 ∧ η3 ∧ η4 ∧ η5,

which is nowhere vanishing. Hence the variational problem is non-degenerate. The form of
the characteristic vector field follows from a direct calculation. �

Remark 3.21. Since the variational problem is non-degenerate, the Euler–Lagrange system
E coincides with the Cartan system ofΨ . The characteristic line-distributionΞ ⊂ T(Y) ofΨ
is transverse to the independence conditionω, and is generated by the characteristic vector
field ξ.

Remark 3.22. Using the explicit form of the Liouville form, we may identifyY = G×R
3,

where(k, λ4, λ5) serve as coordinates onR
3. The explicit form for the characteristic vector

field and the 1-formsηi andω then imply that the mapH : Y → g is given by

H[η(k, λ4, λ5)] =




0 0 0 0

1 0 k 0

0 1 0 k

0 0 1 0


 ∈ g.

A smooth mapΓ : (a, b)→ Y is an integral curve of the Euler–Lagrange system if and
only if it satisfies

Γ ∗(ηi) = 0, i = 1, . . . ,5, Γ ∗(σi) = 0, i = 1,2,3

with the independence condition

Γ ∗(ω) �= 0.

Without loss of generality, we may choose a parameterization of our integral curve such
that

Γ ∗(ω) = dt.

In this case, we may writeΓ : t ∈ (a, b) → (g(t), k(t), λ4(t), λ5(t)) ∈ Y = G × R
3.

From these relations, and the explicit form of the differential formsηi andσi, we deduce
the following result.

Proposition 3.23. The smooth mapΓ : (a, b)→ Y , parameterized such thatΓ ∗(ω) = dt,
is an integral curve of the Euler–Lagrange system if and only if the real-valued functions
k(t), λ4(t), λ5(t) satisfy the relations

dk

dt
= −2λ4

m
,

dλ4

dt
=
(
λ5+ 1

2
k(1−mk)

)
,

dλ5

dt
= kλ4, (12)
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andg(t) ∈ G is a solution of

g(t)−1 dg(t)

dt
= H(η(t)) =




0 0 0 0

1 0 k(t) 0

0 1 0 k(t)

0 0 1 0


 . (13)

Remark 3.24. Although, in the present case, the Lie groupG is not semisimple, it is
naturally embedded in SL(4,R). Using the Killing form onsl(4,R) we deduce that the
Eulerequation (12)may be written in Lax form

L′ = [L,H],

where

L(k, λ4, λ5) =




0 0 0 0
1
2(1+mk) −λ4 −λ5 0

0 1
2(1−mk) 0 −λ5

−m 0 1
2(1−mk) λ4


 .

Proposition 3.25. If Γ : (a, b) → Y is an integral curve of the Euler–Lagrange system,
with Γ ∗(ω) = dt, then the curvaturek(t) satisfies the third-order ordinary differential
equation

m
d3k

dt3
− 3mk

dk

dt
+ dk

dt
= 0. (14)

Conversely, any non-constant solutionk : (a, b)→ R of this equation determines a param-
eterized integral curve of the Euler–Lagrange system, unique up to the action ofE(2,1).

Proof. Eq. (14)for k(t) follows directly from(12). Conversely, given a solution of(14),
we can uniquely reconstructλ4(t), λ5(t) from (12), andg(t) is determined, up to initial
conditions, by(13). �

Remark 3.26. Under the identificationg∗ ∼= R
(2,1)⊕R

(2,1) introduced inSection 2.4, the
Liouville form (11)maps to(p, v) ∈ R

(2,1) ⊕ R
(2,1), where

p = −λ5e1+ λ4e2− 1
2(1−mk)e3, v = −1

2(1+mk)e1+me3,

and{ei} is the standard basis ofR
(2,1). The Casimir operators therefore take the form

C1 = ‖p‖2 = λ2
4− λ5(1−mk), C2 = 〈p, v〉 = mλ5− 1

4(1−m2k2), (15)

and are constant along integral curves of the Euler–Lagrange system.

The explicit form of the Casimir operators implies the following result.
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Proposition 3.27. If Γ : (a, b)→ Y , parameterized such thatΓ ∗(ω) = dt, is an integral
curve of the Euler–Lagrange system then the curvaturek(t) satisfies the first-order ordinary
differential equation(

dk

dt

)2

= k3− 1

m
k2− 1

m2
(4C2+ 1)k + 1

m3
(4mC1+ 4C2+ 1).

Remark 3.28. Lettingh(t) := (1/4)(k − (1/3)m), we deduce thath satisfies(
dh

dt

)2

= 4h3− g2h− g3,

where

g2 = 1

m2

(
C2+ 1

3

)
, g3 = 1

m3

(
mC1

4
+ C2

6
+ 1

27

)
.

Hence the curvaturek and the functionsλ4, λ5 corresponding to any solution of the Euler–
Lagrange system may be expressed in terms of Weierstrass elliptic functions with invariants
g2, g3.

Remark 3.29. A short calculation using the explicit form ofη = ψY given in(11)and the
coadjoint action ofg on g∗, which can be derived from(2), shows that in the present case
the linearized phase portraitΠ(η) = F(η)∩O(η) is one-dimensional, and is spanned by the
vector ad∗[H(η)]η = λ4(ω

2
1−ω1)− (λ5+ (1/2)k(1−mk))ω2− kλ4ω

3. Hence the regular
parts of the phase portraits are one-dimensional in the current problem. We now introduce
a more general class of variational problems for which this is the case.

4. Coisotropic variational problems

Consider a smooth manifoldM equipped with an exterior differential 2-formΨ . The
kernel ofΨx will be denoted byN(Ψ)x. Suppose that a Lie groupG acts onM. Denote by
AJ the fundamental vector field onM corresponding toA ∈ g and, for eachx ∈ M, let
gJ(M)x ⊂ Tx(M) be the vector subspace{AJx : A ∈ g}. We denote bygJ(M)⊥x thepolar
spaceof gJ(M)x with respect toΨx:

gJ(M)⊥x := {v ∈ Tx(M) : Ψx(v,A
J) = 0, ∀AJ ∈ gJ(M)x}.

Definition 4.1. The action ofG onM is coisotropicwith respect toΨ if

gJ(M)⊥x ⊂ gJ(M)x +N(Ψ)x ∀x ∈ M.

Remark 4.2. The notion of a coisotropic action arises naturally when studying collective
complete integrability of Hamiltonian systems (see[13,14,25]).

Definition 4.3. An invariant LagrangianL : A → R is said to becoisotropic if it is
non-degenerate and if the action ofG on the regular part of the momentum spaceY is
coisotropic with respect toΨY , the restriction of the canonical 2-formΨ to Y .
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(Recall that we are now using the notationY , F andP(µ) to denote the regular parts of
the momentum space, phase space and phase portraits, respectively.)

Proposition 4.4. A non-degenerate invariant LagrangianL : A→ R is coisotropic if and
only if the linearized phase portraitΠ(η) is spanned byad∗[H(η)]η, for everyη ∈ F.

Proof. Using the left-invariant trivialization, we find that the polar space ofgJ(Y)(g,η) is
given by

g(η)⊥ := gJ(Y)⊥(g,η) = {A+ V ∈ g⊕ F(η) : V = −ad∗(A)η}.
First, assume thatL is coisotropic, i.e.

g(η)⊥ ⊂ g+ span(H(η)− ad∗[H(η)]η).

Let V ∈ Π(η). ThenV ∈ F(η) and there exists anA ∈ g such thatV = −ad∗(A)η. Then
A+ V belongs tog(η)⊥ and henceV must be a real multiple of ad∗[H(η)]η.

Conversely, assume thatΠ(η) is spanned by ad∗[H(η)]η. Given any element,A+ V , of
the polar spaceg(η)⊥, thenV ∈ Π(η) so there existss ∈ R such thatV = s · ad∗[H(η)]η.
Therefore, we can write

A+ V = −s(H(η)− ad∗[H(η)]η)+ (A+ sH(η)).
SinceA+ sH(η) is an element ofg, it follows thatA+V ∈ g+span(H(η)−ad∗[H(η)]η).
Thereforeg(η)⊥ ⊂ g+ span(H(η)− ad∗[H(η)]η), as required. �

Remark 4.5. Note that if η ∈ F thenΠ(η) is one-dimensional and the mapρ(η) :
Ann(F(η))→ O(η) defined in(6) is injective.

Proposition 4.6. LetL : A→ R be an invariant coisotropic Lagrangian and letY = G×F
be the corresponding momentum space. Suppose thatF is non-empty, we then have:

• dim(Y) = dim(G)+ rank(G)+ 1;
• the regular part of the phase space, F, intersects the coadjoint orbits transversally;
• the regular partsP(µ) of the phase portraits are smooth and one-dimensional;
• everyη ∈ F is a regular element ofg∗. In particular, the isotropy groupGη and the

isotropy algebragη are Abelian.

Proof. For eachη ∈ F, let k(η) be the dimension of the isotropy Lie algebragη. Note that

dim(F(η) ∩O(η)) = 1, dim(O(η)) = dim(G)− k(η),
dim(Ann(F(η))) = dim(G)− dim(F(η)).

We then have

dim(F(η))+ dim(O(η))− 1≤ dim(G),
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which in turn implies that dim(F) ≤ k(η) + 1. On the other hand, from the injectivity of
the mapρ(η) : Ann(F(η))→ O(η), it follows thatk(η) ≤ dim(F). Therefore we have

k(η) ≤ dim(F) ≤ k(η)+ 1.

Notice that dim(G)+ k(η) is even and that dim(Y) = dim(G)+ dim(F) is odd. Thus, we
must havek(η)+ 1= dim(F). In particular,k(η) = k is constant and

dim(Y) = dim(G)+ k + 1.

This implies that

dim(g) = dim(F(η))+ dim(O(η))− 1.

ThusF intersects the coadjoint orbits transversally. Since dim(F(η)∩O(η)) = 1, it follows
thatP(η) = F ∩O(η) is a smooth curve such thatTη[P(η)] = Π(η). Moreover, from the
transversality condition, it follows thatF cannot be contained in the setg∗s of the singular
element ofg∗. Thus,F ∩ g∗r is non-empty. Therefore, there exists anη ∈ F such that
k = k(η) = rank(G). This gives the required result. �

Remark 4.7. The regular part of the phase space,F, is foliated by the nowhere vanishing
vector fieldΦξ and the leaves are the phase portraits. Furthermore, ifX ⊂ F is a local
section of such a foliation thenX is also a local section of the coadjoint representation.

Definition 4.8. LetL : A→ R be a coisotropic Lagrangian. Themoment mapJ : Y → g∗
of the Hamiltonian action ofG onY is defined by

J(g, η) = Ad∗(g)η ∀(g, η) ∈ Y.

Proposition 4.9. LetL : A→ R be a coisotropic Lagrangian. Then:

• J(Y) ⊂ g∗r ;
• J : Y → g∗ is a submersion;
• J−1(µ) is a (k + 1)-dimensional submanifold of Y such that

T(g,η)[J
−1(µ)] = ker[dJ |(g,η)] = span[ξ|(g,η)] + gη.

so that the characteristic vector fieldξ|J−1(µ) is tangent ofJ−1(µ), andGµ acts freely

and properly onJ−1(µ).
• Yµ := J−1(µ)/Gµ is a one-dimensional manifold andJ−1(µ)→ Yµ is a principalGµ

bundle.
• Yµ ∼= P(µ), the phase portrait.

Proof. From Proposition 4.6we know that eachη ∈ F is an element ofg∗r , and hence
J(g, η) ∈ g∗r for all (g, η) ∈ Y . The differential of the moment map is given by the formula

〈dJ |(g,η)(A+ V);B〉 = 〈ad∗(A)η+ V ;B〉 ∀A+ V ∈ g⊕ F(η), ∀B ∈ g. (16)
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This implies that

Im[dJ |(g,η)] = F(η)+O(η)

for all η ∈ F. SinceF andO(η) intersect transversally, this implies thatJ is a submersion.
ThereforeJ−1(µ) is a sub-manifold ofY and the tangent spaceT(g,η)[J−1(µ)] is naturally
isomorphic to ker[dJ |(g,η)]. From the formula(16) and the fact that the Lagrangian is
coisotropic, we deduce that

ker[dJ |(g,η)] = span[ξ|(g,η)] + gη
for all η ∈ F, as required. Note that this relation implies that the characteristic vector field
ξ belongs to ker[dJ ], and therefore thatξ|(g,η) is tangent toJ−1(µ). We shall denote the
restriction ofξ to the fiberJ−1(µ) by ξµ.

The isotropy groupGµ acts onJ−1(µ) by (g, η) $→ (hg, η) for eachh ∈ Gµ. This
action is clearly free and proper, so the quotient spaceYµ := J−1(µ)/Gµ exists as a
one-dimensional manifold. The map

πµ : (g, η) ∈ J−1(µ)→ [(g, η)] ∈ Yµ
givesJ−1(µ) the structure of a principal fiber-bundle with structure groupGµ. Moreover,
the vector fieldξµ is horizontal with respect to the fibrationJ−1(µ)→ Yµ.

We also consider the fibration ofJ−1(µ) overP(µ) defined by

π̃µ : (g, η) ∈ J−1(µ)→ η ∈ P(µ).
The structure group is again the isotropy subgroupGµ. Furthermore,̃πµ is constant along
the fibers of the fibrationπµ, and therefore descends to a diffeomorphism ofYµ onto
P(µ). �

Definition 4.10. We adopt standard terminology, referring toYµ as theMarsden–Weinstein
reductionof Y atµ, and toπµ : J−1(µ)→ Yµ as theMarsden–Weinstein fibrationatµ. We
may considerπµ : J−1(µ)→ Yµ as a principalGµ bundle overYµ, where the right-action
of Gµ onJ−1(µ) is given byRh(g, η) = (hg, η), for all h ∈ Gµ, for (g, η) ∈ J−1(µ).

Definition 4.11. Letµ ∈ J(Y). The restriction of the Marsden–Weinstein fibrationJ−1(µ)

to the reduced phase portraitP̃(µ) is said to be thereduced Marsden–Weinstein fibration.
We shall denote this fibration bỹπµ : Pµ→ P̃(µ).

Remark 4.12. The vector fieldΦξ : η $→ −ad∗[H(η)]η is tangent to the phase portraits.
We denote byΦµξ the restriction ofΦξ to P̃(µ). Note that the vector fieldsξµ andΦµξ are

related by the fibratioñπµ : Pµ→ P̃(µ).

Remark 4.13. On the reduced phase portraitP̃(µ) there exists a unique nowhere van-
ishing 1-formσµ such thatσµ(Φµξ ) = 1. Takeη ∈ P̃(µ), then the integral curveφη :

(ε−(η), ε+(η))→ g∗ is a maximal parameterization ofP̃(µ) such thatφ∗η(σµ) = dt.
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Definition 4.14. OnPµ we consider thegµ-valued 1-formθµ defined by

θµ|(g,η) := Ad(g)(Θ−Hσµ).
This defines a connection on the reduced Marsden–Weinstein fibrationPµ → P̃(µ). We
call θµ thecanonical connectionof the reduced Marsden–Weinstein fibrationPµ→ P̃(µ).

4.1. Isotropic curves inR(2,1)

In the case of our problem for isotropic curves inR
(2,1), we have defined a map

R
3 ↪→ g∗ ∼= R

(2,1) ⊕ R
(2,1), y = (k, λ4, λ5) $→ (p(y), v(y)), (17)

where

p =




−λ5

λ4

−1
2(1−mk)


 , v =



−1

2(1+mk)

0

m


 .

Given the form(10) of the characteristic vector fieldξ, we see that the regular part of the
phase spaceF is given by the complement of the set of points with

λ4 = 0, λ5+ 1
2k(1−mk) = 0. (18)

To show that the action ofE(2,1) on the regular part of the momentum space,Y , is
coisotropic, we consider a general vector field onY :

Z1 ∂

∂k
+ Z2 ∂

∂λ4
+ Z4 ∂

∂λ5
+Xi ∂

∂ωi
+ Y1 ∂

∂ω1
1

+ Y2 ∂

∂ω2
1

+ Y3 ∂

∂ω1
2

.

This vector field lies ing(Y)⊥|(g,k,λ4,λ5) if and only if

1
2mZ1 = −1

2(1−mk)Y1− λ4Y
2, (19a)

Z2 = 1
2(1−mk)Y3+ λ5Y

2, (19b)

Z3 = λ4Y
3− λ5Y

1, (19c)

and

−1
2(1−mk)X1+ λ5X

3−mY3+ 1
2(1+mk)Y2 = 0, (20a)

−λ4X
1− λ5X

2− 1
2mZ1− 1

2(1+mk)Y1 = 0, (20b)

−1
2(1−mk)X2− λ1X

3+mY1 = 0. (20c)

If (k, λ4, λ5) lies in the regular part ofF then conditions(19) and (20)are linearly indepen-
dent. Therefore in this case

dimg(Y)⊥ = 3.
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It is easily checked that the characteristic vector fieldξ belongs tog(Y)⊥, as do the
following vector fields:

S1 = −λ4
∂

∂ω1
1

+ 1

2
(1−mk)

∂

∂ω2
1

− λ5
∂

∂ω1
2

−m ∂

∂ω3
,

S2 = λ5
∂

∂ω1
− λ4

∂

∂ω2
+ 1

2
(1−mk)

∂

∂ω3
.

Hence we have that

g(Y)⊥ = span(ξ, S1, S2) ⊂ span(ξ)⊕ g.
Hence the action is coisotropic.

The momentum map and the basic invariants.From the form of the coadjoint action of
E(2,1) given earlier, we deduce that the moment map takes the form

J(g; y) = (Ap(y),Av(y)− (Ap(y))×Q)
for all g = (Q,A) ∈ E(2,1). Note thatJ(Y) ⊆ g∗r . The basic invariants, which correspond
to constants of motion of the system, are the Casimir operators

C1(g, y) := ‖p(y)‖2 = λ2
4− λ5(1−mk),

C2(g, y) := 〈p(y), v(y)〉 = mλ5− 1
2(1−m2k2).

If we chooseµ = (m1,m2) ∈ g∗r , wherem1,m1 ∈ R
(2,1), thenJ−1(µ) is the set

λ2
4 =

m2

4
k3− m

4
k2−

(
1

4
+ 〈m1,m2〉

)
k +

(
‖m1‖2+ 1

4m
+ 〈m1,m2〉

4

)
, (21a)

λ5 = 1

m

(
1

4
(1−m2k2)+ 〈m1,m2〉

)
. (21b)

If we perform the substitution

k =
(

4

m

)2/3

χ+ 1

3m
, (22)

then the first equation becomes the cubic relation

λ2
4 = 4χ3− g2χ− g3, (23)

where we have defined the “modified Casimirs”

g2(m1,m2) =
(

4

m

)2/3(1

3
+ 〈m1,m2〉

)
,

g3(m1,m2) = −
(
‖m1‖2+ 2

3m
〈m1,m2〉 + 4

27m

)
.
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Parameterization of the phase portraits.We define the discriminant of the cubic polyno-
mial appearing inEq. (23)

D(m1,m2) = 27g2
3 − g3

2.

There are two non-degenerate cases that we must consider.
Case I: D(m1,m2) > 0. In this case the cubic polynomial has one real root and two

complex-conjugate roots. We may parameterize the curve by takingχ(t) = ℘(t; g2, g3)

with t ∈ (0,2ω1), whereω1, ω2 andω3 = (1/2)(ω1 + ω2) are the half-periods of the℘
function. From(22), we then find thatk may be written in terms of elliptic functions and,
solving(21) then givesλ4 andλ5 in terms of elliptic functions.

Case II: D(m1,m2) < 0. In this case the cubic polynomial has three distinct real roots,
and the curve(23) has two disjoint components. The “compact” component may be pa-
rameterized byχ(t) = ℘3(t; g2, g3) := ℘(t + ω3; g2, g3) with t ∈ R. This solution is
periodic, with period 2ω1. The “unbounded” component of the curve is parameterized by
χ(t) = ℘(t; g2, g3), t ∈ (0,2ω1).

In the degenerate cases where the discriminant vanishes atD = 0, the cubic is singular,
and our curve is rational. In this case, the℘ and℘3 functions degenerate into elementary
functions.

5. Integrability by quadratures

Proposition 5.1. The integral curves of the characteristic vector fieldξ with momentum
µ ∈ J(Y) are the horizontal curves of the canonical connectionθµ onPµ.

Proof. Consider a horizontal curveΓ : (a, b) → Pµ of the canonical connection. We
write Γ(t) = (h(t), η(t)), whereh : (a, b)→ G andη : (a, b)→ P(µ) are smooth curves.
Without loss of generality we can assume thatη∗(σµ) = dt, so that

η′(t) = Φµξ |η(t) = −ad∗[H(η(t))]η(t) ∀t ∈ (a, b).
SinceΓ is horizontal, we then have

0= Γ ∗(θµ) = g(t)(h−1(t)h′(t)−H[η(t)])g(t)−1 dt.

This implies thatΓ ′(t) = ξ|Γ(t), for all t ∈ (a, b).
Conversely, ifΓ : (a, b)→ Y is an integral curve ofξwith momentumµ thenΓ(t) ∈ Pµ,

for all t ∈ (a, b). Furthermore, we know that

Γ ′(t) = H(η(t))− ad∗[H(η(t))]η(t).

Thush−1(t)h′(t) = H[η(t)] and henceΓ ∗[θµ] = 0. �

Since the structure group of the Marsden–Weinstein fibrations is Abelian and the base
manifolds are one-dimensional, the horizontal curves of the canonical connection can be
found by a single quadrature. The explicit integration of the horizontal curves requires four
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steps:

• Step 1: take a smooth parameterizationη : (a, b)→ P̃(µ) of the phase portrait.
• Step 2: computevµ : (a, b)→ R such thatη∗(σµ) = vµ dt.
• Step 3: take any mapg : (a, b)→ G such that(g−1, η) : (a, b)→ Y is a cross-section

of the reduced Marsden–Weinstein fibrationπ̃µ : Pµ→ P̃(µ). This involves solving the
equation

Ad∗(g(t)−1)η(t) = µ

for g(t).
• Step 4: compute the gauge transformation

h(t) = exp

[∫ t

t0

(g−1(u)H[η(u)]g(u)vµ(u)+ g−1(u)g′(u))du
]
∀t ∈ (a, b).

(24)

Note that the fact that(g(t)−1, η(t)) is a section ofπ̃µ : Pµ → P̃(µ), along with the
definitions ofH[η] andvµ imply thatg−1(t)H[η(t)]g(t)vµ(t)+ g−1(t)g′(t) ∈ gµ for all
t ∈ (a, b). Henceh(t) ∈ Gµ, for all t ∈ (a, b).
Conclusion. The image of the curveΓ : (a, b)→ Y defined by

Γ(t) = (h(t)g(t)−1, η(t)) ∀t ∈ (a, b) (25)

is contained inPµ andΓ is horizontal for the canonical connectionθµ. Any horizontal
curve ofPµ arises in this way.

Remark 5.2. In the case where the symmetry groupG is a classical matrix group, with
G ⊂ Aut(V) for V a finite-dimensional vector space, and the Lagrangian is a polynomial
function, then we have:

• The phase spaceF is an algebraic subset ofg∗.
• The generic coadjoint orbit is defined by polynomial equationsFj(η) = 0, j = 1, . . . , k,

wherek is the rank ofg and whereF1, . . . , Fk is a basis of the Ad∗-invariant polynomial
functionsg∗ → R.
• The phase portraits are real-algebraic curves.

In the simplest cases the phase portraits are rational or elliptic curves, so they can be easily
parameterized by means of elementary or elliptic functions (see the examples considered
in Refs.[5,12,16,20–23]). The third step in the construction above can be treated in a rather
easy way ifg is semisimple and if the momentumµ is a regular semisimple element of
g∗. In this case the construction of a cross-section of the Marsden–Weinstein fibration is a
linear-algebra problem involving the structure of the Cartan subalgebras ofg.

Definition 5.3. Considerµ ∈ J(Y). We say thatµ is acomplete momentumif ε−(η) = −∞
andε+(η) = ∞ for some (and hence for all)η ∈ P̃(µ).
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Proposition 5.4. If µ ∈ J(Y) is a complete momentum, then the connected components of
the reduced Marsden–Weinstein fibrationPµ→ P̃(µ) are Euclidean cylinders andξµ is a
linear vector field.

Proof. LetQ(µ) be a connected component ofPµ and letη : R → P̃(µ) be an integral
curve of the phase flow that parameterizes the reduced phase portrait. SinceR is contractible,
Q(µ) → P̃(µ) is a trivial fiber bundle. This implies that there exists a smooth mapg :
R → G such that(g−1, η) : R → G × P̃(µ) is a cross-section ofQ(µ) → P̃(µ). Fix
(g0, η0) ∈ Q(µ) and lett0 ∈ R such thatη(t0) = η0 and consider the curveΓ(g0,η0) : R→
Q(µ) defined by

Γ(g0,η0)(t) = (g0g(t0)k(t), η(t)) ∀t ∈ R,

where

k(t) = exp

[∫ t

t0

(g(u)−1H[η(u)]g(u)+ g(u)−1g′(u))du
]
g(t)−1 ∀t ∈ R.

Then,Γ(g0,η0) is the integral curve ofξµ with initial condition Γ(g0,η0)(t0) = (g0, η0).
This shows that the restriction of the vector fieldξµ toQ(µ) is complete. Now fix a basis
(e1, . . . , ek) of gµ and leteJ1, . . . , e

J
k denote the corresponding fundamental vector fields

onQ(µ). Then{ξµ, eJ1, . . . , eJk} is a set of complete, linearly independent and commuting
vector fields onQµ. It is then a standard fact thatQ(µ) is a(k + 1)-dimensional cylinder,
that isQ(µ) = R

k+1/K, whereK ⊂ R
k+1 is a subgroup ofRk+1 generated overZ by

m ≤ k + 1 linearly independent vectorsa1, . . . , am:

K =


m∑
j=1

njaj : nj ∈ Z


 .

The vector fields{ξµ, eJ1, . . . , eJk} are then the push-forward of linear vector fields
b0, b1, . . . , bk onR

k+1. This yields the required result. �

Remark 5.5. If P̃(µ) is compact and the isotropy subgroupGµ is compact, then the con-
nected components of the reduced Marsden–Weinstein fibrationPµ are(k+1)-dimensional
tori.

5.1. Cross-sections of the Marsden–Weinstein fibration for isotropic curves inR
(2,1)

Finally, we show how the above integration procedure may be carried out in our example.
Giveny = (k, λ4, λ5) ∈ R

3, we have defined the vectors(p, v) ∈ R
(2,1) ⊕ R

(2,1) ∼= g∗.
With respect to the standard basis(e1, e2, e3) for R

(2,1) these take the form

p =
3∑
i=1

piei := −λ5e1+ λ4e2− 1

2
(1−mk)e3,

v =
3∑
i=1

viei := −1

2
(1+mk)e1+me3.
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Lettingµ = (m1,m2) ∈ Im J ⊆ g∗r , we wish to construct the mapg : (a, b) ⊂ R → G

with the property that(g−1, η) is a section of the reduced Marsden–Weinstein fibration
π̃µ : Pµ → P̃(µ). We must consider separately the cases where the coadjoint orbit is of
positive, negative or null type.

Positive type. For an orbit of positive type, whereC1 = ‖p‖2 > 0, we may assume, up
to the action ofG onO(µ), thatµ = (m1,m2) is in the standard form:

m1 =
√
C1




0

1

0


 , m2 = C2√

C1




0

1

0


 ,

whereC2 := 〈p, v〉.
We now wish to constructg = (Q,A) ∈ E(2,1) with the property that

η = (p, v) = Ad∗(g)µ.

Since‖p‖2 > 0, we may define theR(2,1)-valued map

A2 := p√
C1
= p

‖p‖
with the property that‖A2‖2 = 1. We can now completeA2 to a frame field(A1, A2, A3)

by adding anyR(2,1)-valued functionsA1, A3 with the property that

〈Ai,Aj〉 = gij , i, j = 1,2,3,

and we fix the orientation of this basis by the requirements that

A2× A1 = A1, A2× A3 = −A3, A3× A1 = A2.

More explicitly, we can define the vectorS = λ4e1+ (λ5− (1/2)(1−mk))e2− λ4e3, with
the property that(p, S) = 0. We then defineA = (A1, A2, A3) : Pµ→ SO(2,1) by

A1 = 1√
2

(
p

‖p‖ ×
S

‖S‖ +
S

‖S‖
)
, A2 = p

‖p‖ ,

A3 = 1√
2

(
p

‖p‖ ×
S

‖S‖ −
S

‖S‖
)
.

Defining the mapQ : Pµ→ R
(2,1) by

Q = − 1√
C1
A2× v = 〈v,A3〉

‖p‖2 A1− 〈v,A1〉
‖p‖2 A3,

we let

g := (Q,A) : Pµ→ P̃(µ).
It then follows that(p, v) = Ad∗(g)µ, as required. Therefore the map(p, v) ∈ P̃(µ) →
(g(p, v)−1, (p, v)) ∈ Pµ is a cross-section of the Marsden–Weinstein fibration.
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Negative type. For orbits of negative type we haveC1 := ‖p‖2 < 0. We treat the
case where the vectorp is future-directed, although the past-directed case may be treated
similarly. The standard form of elements in this case isµ = (m1,m2), where

m1 =
√
|C1|

2




1

0

1


 , m2 = − C2√

2|C1|




1

0

1


 .

To define a suitable basis, we fix a vectorS ∈ R
(2,1) with ‖S‖2 = 1 and〈p, S〉 = 0. (For

example, the vectorS = e2+ p2/p3e1.) We then define a basis

A1 = 1√
2|C1|

(p− p× S), A2 = S, A3 = 1√
2|C1|

(p+ p× S).

LettingA := (A1, A2, A3) ∈ SO(2,1), and

Q := 1

|C1|p× v =
1√

2|C1|
(〈v,A1− A3〉A2− 〈v,A2〉(A1− A3)),

we then defineg := (Q,A). It follows thatη = Ad∗(g)µ, and hence that the map(p, v) $→
(g(p, v)−1, (p, v)) is a cross-section of the Marsden–Weinstein fibration.

Null type. Finally, orbits of negative type haveC1 := ‖p‖2 = 0 with p �= 0. Again we
treat the case where the vectorp is future-directed, the past-directed case being similar. In
this case, we may use the action ofE(2,1) to reduceµ = (m1,m2) to the standard form

m1 =




1

0

0


 , m2 = −C2




0

0

1


 .

We now define the null basis vectorA1 := p, and extend to a basis(A1, A2, A3) by defining,
for example,

A2 = e2+ p
2

p3
e1, A3 = − 1

p3
e1.

We let

Q := A3× v = 〈v,A2〉A3− 〈v,A3〉A2,

and then defineg = (Q,A). Again it follows thatη = Ad∗(g)µ and therefore that the map
(p, v) $→ (g(p, v)−1, (p, v)) is a cross-section of the Marsden–Weinstein fibration.

The explicit parameterizations of the orbits given inSection 4.1have the property that
η∗(σµ) = dt, and hencevµ = 1. From the explicit forms of the cross-sections,g, it is
straightforward to check for each type of orbit thatg(t)−1g(t)′ + g(t)−1H[η(t)]g(t) lies in
gµ for all t in the relevant range, as required. We may then, by direct integration, compute
the gauge transformation(24). The integral curves of the Euler–Lagrange system are then
given by(25).
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Appendix A. Pfaffian differential systems with one independent variable

Definition A.1. LetM be a smooth manifold. APfaffian differential system(I, ω) with
one independent variable onM consists of a Pfaffian differential idealI ⊂ Ω∗(M) and a
non-vanishing 1-formω ∈ Ω1(M) such thatω �≡ 0 (mod I).

Definition A.2. An integral elementof (I, ω) is a pair(x, E) consisting of a pointx ∈ M
and a one-dimensional linear subspaceE ⊂ Tx(M) such thatη|E = 0,∀η ∈ I andω|E �= 0.
We denote byV(I, ω) the set of integral elements of(I, ω). We say thatI has constant rank
if it is generated by the cross-sections of a sub-bundleZ of T ∗(M).

Definition A.3. A (parameterized) integral curveof (I, ω) is a smooth curveα : (a, b) ⊆
R→ M such that

α∗(η) = 0 ∀η ∈ I, γ∗(ω) = dt.

We denote the set of integral curves of the system byV(I, ω).

Definition A.4. We say that the Pfaffian system in one independent variable(I, ω) is
reducibleif there exists a non-empty submanifoldM∗ ⊆ M such that:

• for each pointx ∈ M∗ there exists an integral element(x, E) ∈ V(I, ω) tangent toM∗;
• if N ⊆ M is any other submanifold with the same property thenN ⊆ M∗.
We callM∗ the reduced space. We define onM∗ the reduced Pfaffian system, denoted by
(I∗, ω), which is obtained by restricting the original system(I, ω) toM∗.

A basic result is the following, a proof of which may be found in[12].

Proposition A.5. The Pfaffian systems(I, ω) and(I∗, ω) have the same integral curves.

There is an algorithmic procedure for constructing the reduction of a Pfaffian system[12].
To construct the reduced spaceM∗, we consider the projectionM1 ⊆ M of V(I, ω) toM. If
M1 is a non-empty submanifold ofM, we then define(I1, ω1) to be the restriction of(I, ω)
toM1. We then constructV(I1, ω1), the set of integral elements of(I1, ω1). Repeating this
construction, we inductively define

Mk = (Mk−1)1, Ik = (Ik−1)1, ωk = (ωk−1)1.
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This process defines a sequenceM ⊇ M1 ⊇ · · · ⊇ Mk ⊇ · · · of submanifolds ofM.
If M∗ := ⋂

k∈NMk �= ∅ thenM∗ is the reduced space of the system. Notice that this
procedure requires that, at each stage, the subsetMk ⊆ Mk−1 is a non-empty submanifold.

A.1. Cartan systems

Let Ψ ∈ Ω2(M) be an exterior differential 2-form onM. We define theCartan idealto
be the Pfaffian differential idealC(Ψ) ⊆ Ω∗(M) generated by the set of 1-formsηV := iVΨ
obtained by contractingΨ with vector fields onM. If θ1, . . . , θn is a local coframing onM
and ifΨ = aij θ

i ∧ θj, thenC(Ψ) is locally generated by the 1-formsaij θ
j. A Cartan system

is a pair(C(Ψ), ω) consisting of a Cartan idealC(Ψ) and a 1-formω ∈ Ω1(M) such that
ω|p /∈ C(Ψ)|p, for all p ∈ M.

Definition A.6. A Cartan system(C(Ψ), ω) is regular if:

• it is reducible and the reduced phase spaceM∗ is odd-dimensional;
• the 2-formΨ∗ := Ψ |M∗ ∈ Ω2(M∗) is of maximal rank onM∗.

An important fact is that if(C(Ψ), ω) is regular then the Cartan idealC(Ψ∗) onM∗ is the
restriction toM∗ of the Cartan idealC(Ψ) onM:

I∗ := C(Ψ)|M∗ = C(Ψ∗).
Again, a proof of this result may be found in[12].

If (C(Ψ), ω) is regular, then there exists a unique vector fieldξ onM∗ such thatiξΨ∗ = 0
andω(ξ) = 1. We callξ thecharacteristic vector fieldof the Cartan system(C(Ψ), ω). The
integral curves of the characteristic vector field coincide with the parameterized integral
curves of(C(Ψ∗), ω), and hence with those of(C(Ψ), ω).

A.2. Contact systems on jet spaces

Given a manifoldM, we denote byJk(R,M) the bundle of thek-order jets of mapsγ :
R → M. The k-jet of γ at t will be denoted byjk(γ)|t . Local coordinates(x1, . . . , xn)

on M give standard local coordinates(t, x1, . . . , xn, x1
1, . . . , x

n
1, . . . , x

1
k, . . . , x

n
k ) on the

jet spaceJk(R,M). With respect to such a coordinate system ak-jet with coordinates
(t, x1, . . . , xn, x1

1, . . . , x
n
1, . . . , x

1
k, . . . , x

n
k ) is represented byjk(γ)|t , whereγ is the curve

defined by

γ : s $→ (x1, . . . , xn)+ (x1
1, . . . , x

n
1)(t − s)+ · · · +

1

k!
(x1
k, . . . , x

n
k )(t − s)k.

Thecanonical contact systemI onJk(R,M) is defined to be the Pfaffian differential ideal
generated by the formsηia = dxia−xia+1 dt, i = 0, . . . , n,a = 0, . . . , k−1 (wherexi0 = xi).
The independence condition of the system is given by the 1-form dt. The integral curves
Γ : (a, b) → Jk(R,M) of I such thatΓ ∗(ω) = dt are the canonical liftsjk(γ) of maps
γ : (a, b)→ M.
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Appendix B. Constrained variational problems in one independent variable

Definition B.1. Let (I, ω) be a Pfaffian differential system on a smooth manifoldM and let
L : M → R be a smooth function. The triple(I, ω, L) is said to be aconstrained variational
problem in one independent variable. The functionL is referred to as theLagrangianof
the variational problem.

The LagrangianL gives rise to the action functionalL : V(I, ω)→ R defined (perhaps
not everywhere) on the space of the integral curves of(I, ω) by

L(γ) =
∫
γ

γ∗(Lω).

Definition B.2. By an extremal curveof (I, ω, L) we mean an integral curveγ that is a
critical point of the functionalL when one considers compactly supported variations ofγ

through integral curves of the system.

Let us suppose that the Pfaffian idealI is generated by a sub-bundleZ ⊂ T ∗(M). We then
let Z̃ ⊂ T ∗(M) be the affine sub-bundleLω+ Z. We denote byψ ∈ Ω1(Z̃) the restriction
to Z̃ of the tautological 1-form onT ∗(M), and callψ theLiouville formof the variational
problem. We letΨ be the 2-form dψ and we consider oñZ the Cartan systemC(Ψ) together
with the independence conditionω.

Definition B.3. We say that(I, ω, L) is aregular variational problemif the Cartan system
(C(Ψ), ω) is reducible. The reduced spaceY ⊂ Z̃ of (C(Ψ), ω) is called themomentum
spaceof the variational problem. The restriction of the Cartan system(C(Ψ), ω) to Y is
called theEuler–Lagrange systemof the variational problem, and denoted(E, ω).

The importance of the Euler–Lagrange system comes from the following theorem (cf.
[3,12]).

Theorem B.4. Let Γ : (a, b) → Y be an integral curve of the Euler–Lagrange system.
Thenγ = πM ◦ Γ : (a, b) → M is a critical point of the action functionalL, where
πM : Y → M denotes the restriction to Y of the projectionT ∗(M)→ M.

This theorem allows us to find critical points of the variational problem from the integral
curves the Euler–Lagrange system. However, not all the extremals arise this way for a
general variational problem. It is known that if all the derived systems ofZ have constant
rank, then all the extremals are projections of the integral curves of the Euler–Lagrange
system[3]. Other results in this direction have been proved by Hsu[16].

Definition B.5. A variational problem(I, ω, L) is said to benon-degenerateif the Cartan
system(C(Ψ), ω) is regular, in the sense ofDefinition A.6.
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